15 research outputs found

    Solution Repair/Recovery in Uncertain Optimization Environment

    Full text link
    Operation management problems (such as Production Planning and Scheduling) are represented and formulated as optimization models. The resolution of such optimization models leads to solutions which have to be operated in an organization. However, the conditions under which the optimal solution is obtained rarely correspond exactly to the conditions under which the solution will be operated in the organization.Therefore, in most practical contexts, the computed optimal solution is not anymore optimal under the conditions in which it is operated. Indeed, it can be "far from optimal" or even not feasible. For different reasons, we hadn't the possibility to completely re-optimize the existing solution or plan. As a consequence, it is necessary to look for "repair solutions", i.e., solutions that have a good behavior with respect to possible scenarios, or with respect to uncertainty of the parameters of the model. To tackle the problem, the computed solution should be such that it is possible to "repair" it through a local re-optimization guided by the user or through a limited change aiming at minimizing the impact of taking into consideration the scenarios

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≀0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    A generic multi-criteria repair/recovery framework for optimization under uncertainty : Application to planning and assignment problems

    No full text
    Plusieurs problĂ©matiques de gestion d’opĂ©rations peuvent ĂȘtre formalisĂ©es avec un problĂšme d’optimisation discret. Ces modĂšles d’optimisation sont traditionnellement dĂ©veloppĂ©s sous l’hypothĂšse que les donnĂ©es d’entrĂ©e sont dĂ©terministes, non impactĂ©es par des changements inattendus ou des incertitudes. Au cours des derniĂšres annĂ©es, le besoin en modĂšles performants, incluant des outils efficaces et permettant de rĂ©agir de maniĂšre optimale aux imprĂ©vus (perturbations), n’a cessĂ© de croitre. En phase d’exĂ©cution d’un systĂšme, plusieurs Ă©vĂ©nements imprĂ©vus (incertitudes) peuvent le perturber et le faire dĂ©vier de son parcours original voire rendre son exĂ©cution impossible. Il est vrai que ces incertitudes peuvent ĂȘtre considĂ©rĂ©es de maniĂšre proactive par le biais d’une optimisation stochastique ou des modĂšles d'optimisation robustes. Mais mĂȘme avec des solutions robustes, des Ă©vĂ©nements inattendus peuvent encore se produire nĂ©cessitant de revoir le plan robuste en cours d’exĂ©cution. Dans cette thĂšse, l’objectif est de prendre en compte ces incertitudes de maniĂšre rĂ©active dans les modĂšles. Ainsi, une nouvelle mĂ©thodologie gĂ©nĂ©rique est proposĂ©e pour les problĂšmes d'optimisation de rĂ©paration / rĂ©cupĂ©ration. En considĂ©rant les solutions rĂ©parĂ©es / rĂ©cupĂ©rĂ©es fournies par cette mĂ©thodologie appliquĂ©e Ă  un plan initial en cours de mise en oeuvre, un dĂ©cideur peut vouloir minimiser les coĂ»ts d'exploitation, mais aussi limiter les changements par rapport au plan initial. Le problĂšme de rĂ©paration / rĂ©cupĂ©ration est formulĂ© comme un problĂšme d'optimisation multiobjectif, qui minimise des fonctions spĂ©cifiques relatives Ă  divers critĂšres de rĂ©paration (pilotĂ©s par les choix du dĂ©cideur).A wide variety of operations management problems can be formulated and solved as discrete optimization problems. Traditionally, these models have been mostly developed and used under the assumption that the input data are known in advance, not subject to unexpected changes, nor impacted by uncertainty. In recent years, the need for improved models providing efficient tools for quickly and optimally reacting to the occurrence of unexpected events (disruptions) has become a more and more important issue. In the execution phase, various unanticipated events will disrupt the system and make the plan deviate from its intended course and even make it infeasible.Uncertainty can be taken into account in a proactive way with stochastic optimization or robust optimization models. However, even with robust solutions, unexpected events can still occur requiring to reconsider the robust plan under execution. In this thesis, we are interested to cope with uncertainty in a reactive way. We propose a new generic methodology for repair/recovery optimization problems. When considering repair/recovery solutions for the initial plan under implementation, the decision-maker may want to minimize operating costs, but also limit the changes with respect to the initial plan. We formulate the repair/recovery problem as a multiobjective optimization problem minimizing specified functions for various repair criteria

    Learning Non-Compensatory Sorting models using efficient SAT/MaxSAT formulations

    No full text
    International audienceThe Non-Compensatory Sorting model aims at assigning alternatives evaluated on multiple criteria to one of the predefined ordered categories. Computing parameters of the Non-Compensatory Sorting model compatible to a set of reference assignments is computationally demanding. To overcome this problem, two formulations based on Boolean satisfiability have recently been proposed to learn the parameters of the Non-Compensatory Sorting model from perfect preference information, i.e. when the set of reference assignments can be completely represented in the model. In this paper, two popular variants of the Non-Compensatory Sorting model are considered, the Non-Compensatory Sorting model with a unique profile and the Non-Compensatory Sorting model with a unique set of sufficient coalitions. For each variant, we start by extending the formulation based on a separation principle to the multiple category case. Moreover, we extend the two formulations to handle inconsistency in the preference information using the Maximum satisfiability problem language. A computational study is proposed to compare the efficiency of both formulations to learn the two Non-Compensatory Sorting models (with a unique profile and with a unique set of sufficient coalitions) from noiseless and noisy preference information

    Interactive portfolio selection involving multicriteria sorting models

    No full text
    International audienc

    A compact optimization model for the tail assignment problem

    No full text
    International audienceThis paper investigates a new model for the so-called Tail Assignment Problem, which consists in assigning a well-identified airplane to each flight leg of a given flight schedule, in order to minimize total cost (cost of operating the flights and possible maintenance costs) while complying with a number of operational constraints. The mathematical programming formulation proposed is compact (i.e., involves a number of 0−1 decision variables and constraints polynomial in the problem size parameters) and is shown to be of significantly reduced dimension as compared with previously known compact models. Computational experiments on series of realistic problem instances (obtained by random sampling from real-world data set) are reported. It is shown that with the proposed model, current state-of-the art MIP solvers can efficiently solve to exact optimality large instances representing 30-day flight schedules with typically up to 40 airplanes and 1500 flight legs connecting as many as 21 airports. The model also includes the main existing types of maintenance constraints, and extensive computational experiments are reported on problem instances of size typical of practical applications
    corecore